Происхождение и становление R&D направления

  • Большинство сотрудников нашей компании являются выпускниками Московского государственного технического университета имени Н.Э. Баумана (МГТУ им. Н.Э. Баумана): www.bmstu.ru.

    Это определяет методологию и принципы, используемые нами в ходе научно-исследовательской работы. При решении сложных задач мы используем системный подход, ищем точные и обоснованные решения.

  • Достижения и результаты нашего R&D направления мы публикуем в журналах и обсуждаем на научно-технических конференциях.

    Например, мы часто делаем доклады на конференции "Электронные библиотеки: Перспективные Методы и Технологии, Электронные коллекции", в трудах которой опубликованы многие результаты нашей работы: www.rcdl.ru

  • В рамках R&D мы решаем весьма разнообразные задачи, однако акцент мы делаем на проблемах, связанных с обработкой текстовой информации.

    Особую роль в этом направлении играет задача извлечения информации. Подробно об этой задаче можно прочитать здесь http://en.wikipedia.org/wiki/Information_extraction или здесь http://ru.wikipedia.org/wiki/Извлечение_информации.

    Большое влияние на наше понимание проблемы извлечения информации из неструктурированных текстов и подходов к ее решению оказали работы профессора Массачусетского университета Эндрю Маккалума (Andrew McCallum). Большинство его публикаций на эту тему доступно на его домашней странице: http://www.cs.umass.edu/~mccallum/

  • Мы глубоко убеждены, что решение многих задач должно выполняться с применением машинного обучения.

    Машинное обучение помогает формулировать правила поведения компьютерной системы на основе закономерностей, определяемых инженером не в явной форме, а на основе примеров. Необходимые критерии формулируются автоматическим в ходе анализа системой обучающих примеров. При разработке систем извлечения информации мы активно используем методы машинного обучени.

    Кроме общепринятых моделей и методов, применяемых на практике в рамках машинного обучения, на становление нашей методологии в этом направлении большое влияние оказали работы доктора Эдинбургского университета Чарльза Саттона (Charles Sutton) Большинство его публикаций на тему статистического машинного обучения для задачи извлечения информации из текстов доступно на его домашней странице здесь: http://homepages.inf.ed.ac.uk/csutton/

Последние события

26.09.2024 Внедрили подсказки по паспортным данным

20.07.2024 Обработали в облаке более 2 млрд. данных

09.04.2024 Добавили на Ахантере подсказки по реквизитам банков

01.02.2024 Внедрили кадастровые номера квартир, домов и участков

09.01.2024 Добавили координаты адресов для новых регионов

11.07.2023 Внедрили гео-кодер для адресов Казахстана

Архив событий

12.11.2012 Начали разработку "Навигатора" в рамках сервиса ahunter.ru для более удобного поиска адресов по их фрагментам.

12.07.2012 Внедрили систему ahunterES на базе ИС «Охотник за адресами» в ИТ-инфраструктуре ОАО "Ростелеком".

06.02.2012 Версия 1.4 сервиса «Охотник за адресами» запущена в режиме on-line.

25.10.2011Выполнены работы над двумя независимыми веб-проектами: веб-архив видеоматериалов и социальная сеть для членов ЖСК.

25.08.2011Закончена разработка новой версии сервиса «Охотник за адресами». Обновление получило номер 1.3.

23.06.2011На сервисе «Охотник за адресами» добавлена возможность распознавать и проверять на существование телефонные номера.

Страницы: « назад 10 11 12 вперед »